Home
Class 12
MATHS
" If "a!=6,b,c" satisfy "|[a,2b,2c],[3,b...

" If "a!=6,b,c" satisfy "|[a,2b,2c],[3,b,c],[4,a,b]|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ne 6, b , c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

If a!=6,b,c satisfy det[[a,2b,2c3,b,c4,a,b]]=0, then abc

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

Let a ,b , c in R such that no two of them are equal and satisfy |{:(2a, b, c),( b, c,2a),( c,2a, b):}|=0, then equation 24 a x^2+4b x+c=0 has

If a ,b ,c are different, then the value of x satisfying |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]|=0 is a. c b. a c. b d. 0

Find the values of a,b and c if the matrix A={:[(0,2b,c),(a,b,-c),(a,-b,c)] satisfies A'A = I.

" In a "Delta ABC,b" and "c" satisfy "b^(2)-bc-2c^(2)=0" and "|B-C|=(pi)/(3)" .The measure of "/_A" is "

If a,b,c and d satisfy the equation a+7b+3c+5d=0,8a+4b+6c+2d=-162a+6b+4c+8d=16,5a+3b+7c+d=-16 then (a+d)(b+c) equation

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3