Home
Class 11
MATHS
If |a|=a and | vec b|=b , prove that (...

If `|a|=a` and `| vec b|=b ,` prove that `( vec a/(a^2)- vec b/(b^2))^2` = `(( vec a- vec b)/(a b))^2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|=a and | vec b|=b , prove that ( vec a/(a^2)- vec b/(b^2))^2 = (( vec a- vec b)/(a b))^2 .

If | vec a|= a\ a n d\ | vec b|=b, prove that ( vec a/(a^2)- vec b/(b^2))^2=(( vec a- vec b)/(a b))^2

If |a|=a and |vec b|=b, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=vec a and |vec b|, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

Prove that (vec a × vec b)^(2) = a^(2)b^(2)-(vec a . vec b)^(2) .

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

If vec a and vec b are orthogonal vectors, prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))