Home
Class 12
MATHS
Reduction Formula: If In = int0 ^(pi/2) ...

Reduction Formula: If `I_n = int_0 ^(pi/2) sin^nx = (n-1)/n I_(n-2)` and find `I_n` in terms of n for n being odd or even.

Promotional Banner

Similar Questions

Explore conceptually related problems

Reduction Formula: If I_(n)=int_(0)^((pi)/(2))sin^(n)x=(n-1)/(n)I_(n-2) and find I_(n) in terms of n for n being odd or even.

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

Find the reduction formula for int_(0)^((pi)/(2))sin^(n)xdx

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =