Home
Class 12
MATHS
If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)...

If adj`B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1))` is `P Q` b. `Q A P` c. `P A Q` d. `P A^1Q`

Promotional Banner

Similar Questions

Explore conceptually related problems

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A,|P|=|Q|=1, then adj (Q^(-1)BP^(-1)) is PQ b.QAP c.PAQ d.PA^(1)Q

" If "A,B,P" and "Q" are square matrices of the same order such that "adj B=A,|P|=|Q|=1," then "adj(Q^(-1)BP^(-1))=

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

If in an A.P., the pth term is q\ a n d\ (p+q)^(t h) term is zero then the q^(t h) term is a. -p b. p c. p+q d. p-q

A B C D is a parallelogram. P is a point on A D such that A P=1/3\ A D\ a n d\ Q is a point on B C such that C Q=1/3B C . Prove that A Q C P is a parallelogram.

A B C D is a parallelogram. P is a point on A D such that A P=1/3\ A D\ a n d\ Q is a point on B C such that: C Q=1/3B Cdot Prove that A Q C P is a parallelogram.

In a right triangle A B C right-angled at B , if P a n d Q are points on the sides A Ba n dA C respectively, then (a) A Q^2+C P^2=2(A C^2+P Q^2) (b) 2(A Q^2+C P^2)=A C^2+P Q^2 (c) A Q^2+C P^2=A C^2+P Q^2 (d) A Q+C P=1/2(A C+P Q)dot

In parallelogram ABCD, two points P and Q are taken on diagonal BD such that D P = B Q . Show that: (i) DeltaA P D~= DeltaC Q B (ii) A P = C Q (iii) DeltaA Q B~= DeltaC P D (iv) A Q = C P (v) APCQ is a parallelogram.