Home
Class 12
MATHS
Let z1,z2 be complex numbers with |z1|=...

Let `z_1,z_2` be complex numbers with `|z_1|=|z_2|=1` prove that `|z_1+1| +|z_2+1| +|z_1 z_2+1| geq2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_1, z_2 be two complex numbers with |z_1| = |z_2| . Prove that ((z_1 + z_2)^2)/(z_1 z_2) is real.

Let z_1, z_2 be two complex numbers with |z_1| = |z_2| . Prove that ((z_1 + z_2)^2)/(z_1 z_2) is real.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If z_1 and z_2 are two complex number such that |z_1|<1<|z_2| then prove that |(1-z_1 bar z_2)/(z_1-z_2)|<1

For any two complex numbers z_1 and z_2 , prove that |z_1+z_2| =|z_1|-|z_2| and |z_1-z_2|>=|z_1|-|z_2|

Let x_1 and y_1 be real numbers. If z_1 and z_2 are complex numbers such that |z_1| = |z_2|=4 , then |x_1 z_1 - y_1 z_2|^(2) + |y_1 z_1 + x_1 z_2 |^(2) is equal to

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,