Home
Class 12
MATHS
" If "x(x^(4)+1)phi(x)=1," then "int(1)^...

" If "x(x^(4)+1)phi(x)=1," then "int_(1)^(2)phi(x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

By substitution: Theorem: If int f(x)dx=phi(x) then int f(ax+b)dx=(1)/(a)phi(ax+b)dx

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

If f(x),g(x),h(x) and phi(x) are polynomial in x ,(int_(1)^(x)f(x)h(x)dx)(int_(1)^(x)g(x)phi(x)dx)-(int_(1)^(x)g(x)h(x)dx) is divisible by (x-1)^(2). Find maximum value of lambda

if phi (x) = lim_ (x rarr oo) (x ^ (n) -x ^ (- n)) / (x ^ (n) + x ^ (- n)) then int sin ^ (- 1) x phi (x) dx