Home
Class 11
MATHS
" If "adj B=A" and "|P|=|Q|=1" then "^(a...

" If "adj B=A" and "|P|=|Q|=1" then "^(adj)(Q^(-1)BP^(-1))=

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "A,B,P" and "Q" are square matrices of the same order such that "adj B=A,|P|=|Q|=1," then "adj(Q^(-1)BP^(-1))=

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A,|P|=|Q|=1, then adj (Q^(-1)BP^(-1)) is PQ b.QAP c.PAQ d.PA^(1)Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

[" If "A" and "B" are square matrices "],[" of order "3times3," where "|A|=2" and "],[|B|=1," then "|(A^(-1))*adj(B^(-1))],[" adj "(2A^(-1))|=],[" (1) "1],[" (2) "8],[" (3) "7],[" (4) "4]

Let A and B are two matrices of order 3xx3 , where |A|=-2 and |B|=2 , then |A^(-1)adj(B^(-1))adj(2A^(-1))| is equal to

Let A and B are two matrices of order 3xx3 , where |A|=-2 and |B|=2 , then |A^(-1)adj(B^(-1))adj(2A^(-1))| is equal to

If A is a square matrix of order less than 4 such that |A-A^(T)| ne 0 and B= adj. (A), then adj. (B^(2)A^(-1) B^(-1) A) is