Home
Class 12
MATHS
Let f(x)=|(x+1/2)[x]|,when -2 leq x le...

Let `f(x)=|(x+1/2)[x]|`,when `-2 leq x leq 2|`. where `[.]` represents greatest integer function. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let f(x) = [x] and [] represents the greatest integer function, then

Let f(x) = [x] and [] represents the greatest integer function, then

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is