Home
Class 12
MATHS
Let f be a differentiable function satis...

Let f be a differentiable function satisfying
`[f(x)]^(n)=f(nx)" for all "x inR.`
Then, `f'(x)f(nx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying f'(x)=f' (-x) AA x in R. Then

Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y)f(z)=14" for all "x,y,z inR Then,

Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y)f(z)=14" for all "x,y,z inR Then,

Let f be a differentiable function satisfying f(x/y)=f(x)-f(y) for all x ,\ y > 0. If f^(prime)(1)=1 then find f(x)dot

Let f:(-1,1)rarrR be a differentiable function satisfying (f'(x))^4=16(f(x))^2 for all x in (-1,1) , f(0)=0. The number of such functions is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is