Home
Class 12
MATHS
If intx^5e^(4x^2)dx=(1)/(48)e^(4x^2)(f(x...

If `intx^5e^(4x^2)dx=(1)/(48)e^(4x^2)(f(x))+c`, where c is contant of intergration then `f(x)` equals to (a) `-4x^3-1` (b) `-1-2x^3` (c) `4x^3+1` (d) `1-2x^3`

A

`-4x^3-1`

B

`4x^3+1`

C

`-2x^3-1`

D

`-2x^3+1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

If int lambda x^(5)backslash e^(-4x^(3))dx=(1)/(48)e^(-4x^(3))(f(x))+c where c is constant of intergration then f(x) equals to (a)-4x^(3)-1( b) -1-2x^(3)(c)4x^(3)+1(d)1-2x^(3)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

f(x)=int(e^(x^(2))(4x^(2)-1))/(x^((3)/(2)))dx

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is