Home
Class 12
MATHS
Let I=int(a)^(b) (x^4-2x^2)dx. If is min...

Let `I=int_(a)^(b) (x^4-2x^2)dx`. If is minimum, then the ordered pair (a, b) is

A

`(-sqrt2, 0)`

B

`(-sqrt2, sqrt2)`

C

`(0,sqrt2)`

D

`(sqrt2,-sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a, b) is:

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a,b) is (-sqrtk,sqrtl) . The value of (k+l) is _________.

I=int_(0)^(4)(x^(2)+2x+4)dx

I=int_(0)^(2)x sqrt(4-x^(2))dx

int_(a)^(b)(log x)/(x^(2))dx

int_(b)^( a)x^(2)dx=

If int_(a)^(b)(2+x-x^(2))dx is maximum,then (a+b) is equal to

If a lt int_(0)^(2pi)) (1)/(10+3 cos x)dx lt b . Then the ordered pair (a,b) is

Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then