Home
Class 12
MATHS
If int(0)^(1) f(t)dt=x^2+int(0)^(1) t^2f...

`If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt`, then f'(1/2)is

A

`6/25`

B

`24/25`

C

`18/25`

D

`4/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x^2 + \int_{x}^{1} t^2 f(t) \, dt \] We need to find \( f'(1/2) \). ### Step 1: Differentiate both sides with respect to \( x \) Using the Fundamental Theorem of Calculus and Leibniz's rule for differentiating under the integral sign, we differentiate both sides: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) = f(x) \] For the right-hand side, we differentiate: \[ \frac{d}{dx} \left( x^2 + \int_{x}^{1} t^2 f(t) \, dt \right) = 2x + \frac{d}{dx} \left( \int_{x}^{1} t^2 f(t) \, dt \right) \] Using Leibniz's rule: \[ \frac{d}{dx} \left( \int_{x}^{1} t^2 f(t) \, dt \right) = -x^2 f(x) \] So, we have: \[ f(x) = 2x - x^2 f(x) \] ### Step 2: Rearranging the equation Rearranging the equation gives: \[ f(x) + x^2 f(x) = 2x \] Factoring out \( f(x) \): \[ f(x)(1 + x^2) = 2x \] ### Step 3: Solve for \( f(x) \) Now, we can solve for \( f(x) \): \[ f(x) = \frac{2x}{1 + x^2} \] ### Step 4: Differentiate \( f(x) \) Next, we need to find \( f'(x) \): Using the quotient rule: \[ f'(x) = \frac{(1 + x^2)(2) - 2x(2x)}{(1 + x^2)^2} \] This simplifies to: \[ f'(x) = \frac{2 + 2x^2 - 4x^2}{(1 + x^2)^2} = \frac{2 - 2x^2}{(1 + x^2)^2} \] ### Step 5: Evaluate \( f'(1/2) \) Now, we substitute \( x = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{2 - 2\left(\frac{1}{2}\right)^2}{\left(1 + \left(\frac{1}{2}\right)^2\right)^2} \] Calculating this step-by-step: 1. Calculate \( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) 2. Substitute into the numerator: \( 2 - 2 \cdot \frac{1}{4} = 2 - \frac{1}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \) 3. Calculate the denominator: \( 1 + \frac{1}{4} = \frac{5}{4} \) and then square it: \( \left(\frac{5}{4}\right)^2 = \frac{25}{16} \) Putting it all together: \[ f'\left(\frac{1}{2}\right) = \frac{\frac{3}{2}}{\frac{25}{16}} = \frac{3}{2} \cdot \frac{16}{25} = \frac{48}{50} = \frac{24}{25} \] ### Final Answer Thus, \( f'\left(\frac{1}{2}\right) = \frac{24}{25} \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If f(x)=int_(0)^(x)tf(t)dt+2, then