Home
Class 12
MATHS
The integral int(pi//6)^(pi//4)(dx)/(si...

The integral `int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x))` equals

A

`1/10(pi/4-tan^(-1)(1/(9sqrt3)))`

B

`1/5(pi/4-tan^(-1)(1/(3sqrt3)))`

C

`pi/10`

D

`1/20-tan^(-1)(1/(9sqrt3))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of int_((pi)/(6))^((pi)/(4))(dx)/(sin2x*(tan^(5)x+cot^(5)x)) is (A) (pi)/(40)(B)(pi)/(60)(C)(pi)/(120) (D) (pi)/(20)

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Compute the integrals : int_(pi//4)^(pi//3) (x dx)/( sin^(2) x)

The integral int_((pi)/(12))^((pi)/(4))(8cos2x)/((tan x+cot x)^(3))dx equals

int_(0)^(pi//2) (cos^(5)x)/(sin^(5)x+cos^(5)x)dx is equal to

The value of the integral int_(0)^(pi/2)(cos x)/((2+sin x)(4+sin x))dx equals

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The value of the integral int_(pi//6)^(pi//2)((sinx-xcosx))/(x(x+sinx))dx is equal to

int_(0)^((pi)/(2))(dx)/(5+4sin x)