Home
Class 12
MATHS
The integral int(1)^(e){(x/e)^(2x)-(e/x)...

The integral `int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx` is equal to

A

`1/2-e-1/e^2`

B

`3/2-1/e-1/(2e^2)`

C

`-1/2+1/e-1/(2e^2)`

D

`3/2-e-1/(2e^2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

The intergral int_(1)^(2) e^(x) . X^(2) (2 + log_(e)x) dx equals "

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

Evaluate the following definite integral: int_(1)^(e)(e^(x))/(x)(1+x log x)dx

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

int_(-1)^(1)(e^(x)+e^(-x))/(2(1+e^(2x)))dx is equal to

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is