Home
Class 12
MATHS
Show that the locus represented by x=(1)...

Show that the locus represented by `x=(1)/(2)a(t+(1)/(t)),y=(1)/(2)a(t-(1)/(t))` is a rectangular hyperbola.

Text Solution

Verified by Experts

Let point P be `(a sec theta, b tan theta)`.
Equation of tangent at point P is `(x)/(a)sec theta-(y)/(b)tan theta=1`
Equation of asymptotes are `y=pm(b)/(a)x.`
Solving asymptotes with tangent, we get
`Q-=((a)/(sectheta-tantheta),(b)/(sectheta-tantheta))`
`"and "R-=((a)/(sectheta+tantheta),(-b)/(sectheta+tantheta))`
`therefore" Area of triangle CQR"=(1)/(2)||(0,0),((a)/(sectheta-tantheta),(b)/(sectheta-tantheta)),((a)/(sectheta+tantheta),(-b)/(sectheta+tantheta)),(0,0)||`
`=(1)/(2)|-(a)/(sectheta-tantheta).(b)/(sectheta+tantheta)-(a)/(sectheta-tantheta).(b)/(sectheta+tantheta)|`
= ab, which is constant.
Also, midpoint of QR is
`(((1)/(sectheta-tantheta)+(1)/(sectheta+tantheta))/(2),((b)/(sectheta-tantheta)-(b)/(sectheta+tantheta))/(2))`
`-=(a sec theta, b tan theta)`, which is point P.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.1|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.2|12 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos

Similar Questions

Explore conceptually related problems

The locus represented by x=(a)/(2)(t+(1)/(t)),y=(a)/(2)(t-(1)/(t)) is

The locus of a point represent by x=(a)/(2)((t+1)/(t)),y=(a)/(2)((t-1)/(t)) , where t=in R-{0} , is

The locus of a point reprersented by x=(a)/(2)((t+1)/(t)),y=(a)/(2)((t-1)/(1)), where t in R-{0}, is x^(2)+y^(2)=a^(2)(b)x^(2)-y^(2)=a^(2)x+y=a(d)x-y=a

Prove that the point {(a)/(2)(t+(1)/(t)), (b)/(2)(t-(1)/(t))} lies on the hyperbola for all values of t(tne0) .

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If the locus of the point ((a)/(2)(t+(1)/(t)),(a)/(2)(t-(1)/(t))) represents a conic,then distance between the directrices is

The equation x =1/2 (t+ (1)/(t)), y = 1/2 (t - 1/t), t ne 0 represents

If t is a parameter, then x=a(t+(1)/(t)) , y=b(t-(1)/(t)) represents

The eccentricity the hyperbola x=(a)/(2)(t+(1)/(t)),y=(a)/(2)(t-(1)/(t)) is sqrt(2).bsqrt(3)c.2sqrt(3)d.3sqrt(2)

For any real t,x=(1)/(2)(e^(t)+e^(-t)),y=(1)/(2)(e^(t)-e^(-t)) is a point on the hyperbola x^(2)-y^(2)=1 show that the area bouyped by the hyperbola and the lines joining its centre to the points corresponding to t_(1)and-t_(1) ist _(1) .