Home
Class 12
MATHS
For hyperbola x^2/a^2-y^2/b^2=1 , let n...

For hyperbola `x^2/a^2-y^2/b^2=1` , let n be the number of points on the plane through which perpendicular tangents are drawn.

A

If n = 1, then `e=sqrt2`

B

If n gt 1, then `0 lt e lt sqrt2.`

C

If n = 0, then `e gt sqrt2`.

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

The locus of the point of intersection of perpendicular tangents is director circle `x^(2)+y^(2)=a^(2)-b^(2)`. Now,
`e^(2)=1+(b^(2))/(a^(2))`
If `a^(2) gt b^(2)`, then there are infinite (or more than 1) points on the circle, i.e., `e^(2)lt2 or e ltsqrt2`. ltBrgt If `a^(2) lt b^(2)`, there does not exist any point on the plane, i.e.,
`e^(2) gt2 or e gtsqrt2`.
If `a^(2)=b^(2)`, there is exactly one point (center of the hyperbola),
i.e., `e=sqrt2`.
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise (Comprehension)|21 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Single)|68 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos

Similar Questions

Explore conceptually related problems

For the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, let n be the number of points on the plane through which perpendicular tangents are drawn.If n=1, then e=sqrt(2) If n>1, then 0 sqrt(2) None of these

There exist two points P and Q on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 such that PObotOQ , where O is the origin, then the number of points in the xy -plane from where pair of perpendicular tangents can be drawn to the hyperbola , is

Let E_1 be the ellipse x^2/(a^2+2)+y^2/b^2=1 and E_2 be the ellipse x^2/a^2+y^2/(b^2+1)=1 . The number of points from which two perpendicular tangents can be drawn to each of E_1 and E_2 is

For the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , distance between the foci is 10 units. Form the point (2, sqrt3) , perpendicular tangents are drawn to the hyperbola, then the value of |(b)/(a)| is

Let the equation of the circle is x^(2)+y^(2)=4 Find the total no.of points on y=|x| from which perpendicular tangents can be drawn are.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

Let 'p' be the perpendicular distance from the centre C of the hyperbola x^2/a^2-y^2/b^2=1 to the tangent drawn at a point R on the hyperbola. If S & S' are the two foci of the hyperbola, then show that (RS + RS')^2 = 4 a^2(1+b^2/p^2).

Statement- 1 : Tangents drawn from the point (2,-1) to the hyperbola x^(2)-4y^(2)=4 are at right angle. Statement- 2 : The locus of the point of intersection of perpendicular tangents to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is the circle x^(2)+y^(2)=a^(2)-b^(2) .

Find the points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))= 2 from which two perpendicular tangents can be drawn to the circle x^(2) + y^(2) = a^(2)

The points on the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 from where mutually perpendicular tangents can be drawn to circle x^(2) + y^(2) = a^(2)/2 is /are

CENGAGE-HYPERBOLA-Exercise (Multiple)
  1. If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four poi...

    Text Solution

    |

  2. The equation (x-alpha)^2+(y-beta)^2=k(lx+my+n)^2 represents

    Text Solution

    |

  3. If (5,12)a n d(24 ,7) are the foci of a hyperbola passing through the ...

    Text Solution

    |

  4. Show that the equation 9x^2-16 y^2-18 x+32 y-151=0 represents a hyperb...

    Text Solution

    |

  5. If a hyperbola passes through the foci of the ellipse (x^2)/(25)+(y^2)...

    Text Solution

    |

  6. If the foci of (x^2)/(a^2)-(y^2)/(b^2)=1 coincide with the foci of (x^...

    Text Solution

    |

  7. The differential equation (dy)/(dx)=(3y)/(2x) represents a family of h...

    Text Solution

    |

  8. If p is a point on a hyperbola, then

    Text Solution

    |

  9. If the ellipse x^(2)+2y^(2)=4 and the hyperbola S = 0 have same end po...

    Text Solution

    |

  10. For which of the hyperbolas, can we have more than one pair of perp...

    Text Solution

    |

  11. The lines parallel to the normal to the curve x y=1 is/are 3x+4y+5=0 ...

    Text Solution

    |

  12. From the point (2, 2) tangent are drawn to the hyperbola (x^2)/(16)-(y...

    Text Solution

    |

  13. For hyperbola x^2/a^2-y^2/b^2=1 , let n be the number of points on th...

    Text Solution

    |

  14. Ifthe normal at P to the rectangular hyperbola x^2-y^2=4 meets the axe...

    Text Solution

    |

  15. Find the equation of tangent to the hyperbola y=(x+9)/(x+5) which pas...

    Text Solution

    |

  16. Tangents which are parrallel to the line 2x+y+8=0 are drawn to hyperb...

    Text Solution

    |

  17. Find the equations of the tangents to the hyperbola x^2=9y^2=9 that ar...

    Text Solution

    |

  18. Circles are drawn on chords of the rectangular hyperbola xy = 4 parall...

    Text Solution

    |