Home
Class 12
MATHS
If 4(x-sqrt2)^(2)+lambda(y-sqrt3)^(2)=45...

If `4(x-sqrt2)^(2)+lambda(y-sqrt3)^(2)=45 and (x-sqrt2)^(2)-4(y-sqrt3)^(2)=5` cut orthogonally, then integral value of `lambda` is ________.

Text Solution

Verified by Experts

The correct Answer is:
9

Ellipse `((x-sqrt2)^(2))/(45//4)-((y-sqrt3)^(2))/(45//lambda)=1" cut orthogonally."`
So, conics are confocal.
`therefore" "(45)/(4)-(45)/(lambda)=5+(5)/(4)`
`therefore" "lambda=9`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise JEE Main Previous Year|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

(2)/(sqrt(x))+(3)/(sqrt(y))=2 and (4)/(sqrt(x))-(9)/(sqrt(y))=-1