Home
Class 12
MATHS
nd are inclined at avgicsTangents are dr...

nd are inclined at avgicsTangents are drawn from the point `(alpha, beta)` to the hyperbola `3x^2- 2y^2=6` and are inclined atv angle `theta and phi` to the x-axis.If `tan theta.tan phi=2`, prove that `beta^2 = 2alpha^2 - 7`.

Text Solution

Verified by Experts

The correct Answer is:
7

The given hyperbola is
`3x^(2)-2y^(2)=6`
`"or "(x^(2))/(2)-(y^(2))/(3)=1`
Equation of tangent is
`y=mx pm sqrt(a^(2)m^(2)-b^(2))`
`"or "(y-mx)^(2)=a^(2)m^(2)-b^(2)`
Tangents from the point `(alpha, beta)` will be
`(beta-malpha)^(2)=2m^(2)-3" "("Since"a^(2)=2 and b^(2)=3)`
`"or "m^(2)alpha^(2)+beta^(2)-2malphabeta-2m^(2)+3=0`
`m^(2)(alpha^(2)-2)-2alpha betam+beta^(2)+3=0`
`m_(1)*m_(2)=(beta^(2)+3)/(alpha^(2)-3)=2=tan thetatan phi`
`therefore" "beta^(2)+3=2(alpha^(2)-2)`
`"or "2alpha^(2)-beta^(2)=7`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise JEE Main Previous Year|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos

Similar Questions

Explore conceptually related problems

nd are inclined at avgics Tangents are drawn from the point (alpha,beta) to the hyperbola 3x^(2)-2y^(2)=6 and are inclined atv angle theta and phi to the x-axis.If tan theta.tan phi=2 , prove that beta^(2)=2 alpha^(2)-7

Tangents are drawn from the point (alpha,2) to the hyperbola 3x^(2)-2y^(2)=6 and are inclined at angles theta and phi to the x-axis.If tan theta,tan phi=2, then the value of 2 alpha^(2)-7 is

Tangents are drawn from the point ((alpha,beta)) to the hyperbola 3x^(2)-2y^(2)=6 and are inclined at angle theta and phi to the X - axis.If tan theta*tan phi=2 ,then the value of 2 alpha^(2)-beta^(2) is

If two perpendicular tangents can be drawn from the point (alpha,beta) to the hyperbola x^(2)-y^(2)=a^(2) then (alpha,beta) lies on

If 2tan beta+cot beta=tan alpha, prove that cot beta=2tan(alpha-beta)

Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angles alpha and beta with the x-axis. If tan alpha tan beta=1 , then find the value of c^(2)-d^(2) .

If 3tan theta tan phi=1. Prove that 2cos(theta+phi)=cos(theta-phi)

If tan^(2)theta=2tan^(2)phi+1, prove that cos2 theta+sin^(2)phi=0

if 2tan beta+cot beta=tan alpha then prove that cot beta=2tan(alpha-beta)

If tan^(2)theta=1+2tan^(2)phi, prove that cos2 phi=1+2cos2 theta