Home
Class 12
MATHS
Evalute [lim(xto0) (sin^(-1)x)/(x)]=1, w...

Evalute `[lim_(xto0) (sin^(-1)x)/(x)]=1`, where`[*]` represets the greatest interger function.

Text Solution

Verified by Experts

See the graphs of y=x and `y=sin^(-1)`x in the following figure.

For `f(x)=sin^(-1)xthereforef'(x)=1/sqrt(1-x^(2))`
f'(0)=1
So the curvetouches the line y=x at x=0.
For `0ltxlt1, f'(x)gt1`
So the graph of y `sin^(-1)x` lies above the graph of y=x.
From the graph, when `xto0^(+)`, the graph of `y=sin^(-1)` is above the graph of y=x
or `sin^(-1)xgtxrArr(sin^(-1)x)/xgt1rArr[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
When `x to 0^(-)`, the graph of `y=sin^(-1)x` is below the graph of y = x
or `sin^(-1)xltxrArr(sin^(-1)x)/xgt1("as x is negative")rArr[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
Thus, `[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
Promotional Banner

Topper's Solved these Questions

  • GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise|18 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE|Exercise Exercise|18 Videos
  • GRAPHICAL TRANSFORMATIONS

    CENGAGE|Exercise Exercise|22 Videos

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

Evaluate: lim_(xto0)(sin 3x)/(sin 7x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

Solve lim_(xto0)[(sin|x|)/(|x|)] , where [.] denotes greatest integer function.

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to