Home
Class 12
MATHS
If x gt y gt 0, then find the value of t...

If `x gt y gt 0`, then find the value of `tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) \] ### Step 1: Use the formula for the sum of inverse tangents We can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] provided that \(ab < 1\). Let \(a = \frac{x}{y}\) and \(b = \frac{x+y}{x-y}\). ### Step 2: Calculate \(ab\) First, we need to check if \(ab < 1\): \[ ab = \frac{x}{y} \cdot \frac{x+y}{x-y} = \frac{x(x+y)}{y(x-y)} \] ### Step 3: Calculate \(a + b\) Now, we calculate \(a + b\): \[ a + b = \frac{x}{y} + \frac{x+y}{x-y} = \frac{x(x-y) + y(x+y)}{y(x-y)} \] Simplifying the numerator: \[ x(x-y) + y(x+y) = x^2 - xy + yx + y^2 = x^2 + y^2 \] So, \[ a + b = \frac{x^2 + y^2}{y(x-y)} \] ### Step 4: Calculate \(1 - ab\) Next, we calculate \(1 - ab\): \[ 1 - ab = 1 - \frac{x(x+y)}{y(x-y)} = \frac{y(x-y) - x(x+y)}{y(x-y)} \] Simplifying the numerator: \[ y(x-y) - x(x+y) = yx - y^2 - x^2 - xy = -x^2 - y^2 \] Thus, \[ 1 - ab = \frac{- (x^2 + y^2)}{y(x-y)} \] ### Step 5: Substitute into the formula Now we can substitute \(a + b\) and \(1 - ab\) into the formula: \[ \tan^{-1}\left(\frac{a + b}{1 - ab}\right) = \tan^{-1}\left(\frac{\frac{x^2 + y^2}{y(x-y)}}{\frac{-(x^2 + y^2)}{y(x-y)}}\right) \] This simplifies to: \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] ### Conclusion Thus, the value of the expression is: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) = -\frac{\pi}{4} \]

To solve the problem, we need to find the value of the expression: \[ \tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right) \] ### Step 1: Use the formula for the sum of inverse tangents ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + "cot"^(-1)(yz + 1)/(y - z) + "cot"^(-1)(zx + 1)/(z - x)

If x gt 0, y gt 0 then minimum value of (x+y)(1/x+ 1/y) is

If tan (x+y) tan (x-y) = 1, then the value of tan ((2x)/3) is

Tan^(-1)((x)/(y))-Tan^(-1)((x-y)/(x+y)) is equal to

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If tan(x+y) tan(x-y)=1 , then the value of tan((2x)/3) is:

If x^(2)-y^(2) =1 , (x gt y) ,then find the value of log(x-y) (x+y)