Home
Class 12
MATHS
Prove that tan^(-1).(1)/(sqrt2) + sin^(-...

Prove that `tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))`

Text Solution

Verified by Experts

`tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10)`
`= tan^(-1).(1)/(sqrt2) + tan^(-1).(1)/(2) - tan^(-1) 3`
`= tan^(-1).(1)/(sqrt2) -[tan^(-1) 3 - tan^(-1).(1)/(2)]`
`= tan^(-1).(1)/(sqrt2) - [tan^(-1).(3- (1)/(2))/(1 + (3)/(2))]`
`= tan^(-1).(1)/(sqrt2) - tan^(-1) 1`
`= tan^(-1).((1)/(sqrt2) -1)/(1 + (1)/(sqrt2))`
`= tan^(-1) (1 - sqrt2)/(1 + sqrt2)`
`= -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2)) " " ( :' (1 - sqrt2)/(1 + sqrt2) lt 0)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

1. sin^(-1) (1/sqrt2) 2. cos^(-1) (sqrt3/2)

Prove that: i) sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2

tan ^(-1)(1) + cos^(-1)(1/sqrt2) + sin^(-1)(1/2)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)(1/2)+cos^(-1)(1/sqrt2)=?

sin[cos^(-1)(-1/sqrt2)]=?

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is