Home
Class 12
MATHS
The number of real values of x satisfyin...

The number of real values of x satisfying `tan^-1(x/(1-x^2))+tan^-1 (1/x^3)` is

Text Solution

Verified by Experts

The correct Answer is:
no solution

Given equation is `tan^(-1) ((x)/(1 -x^(2))) + tan^(-1) ((1)/(x^(3))) = (3pi)/(4)`
Clearly `x != +- 1`
`tan^(-1) ((x)/(1 - x^(2))) + tan^(-1) ((1)/(x^(3))) = tan.((x)/(1 - x^(2)) + (1)/(x^(3)))/(1 - (x)/(x^(3) (1 - x^(2))))`
`= tan^(-1).(x^(4) + 1 -x^(2))/((x^(2) -x^(4) -1) x)`
`= tan^(-1).(-(1)/(x))`
`:. tan^(-1) (-(1)/(x)) = (3pi)/(4)`
`rArr x = 1, " but " x != 1`
So the given equation has no solution
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3)))=(3pi)/(4) is :

The number of real values of x satisfying tan^(-1)((x)/(x+2))+(pi)/(2)=tan^(-1)2x^(2)+cot^(-1)((x)/(x+4))

Considering only the principal values of inverse trigonometric functions,the number of positive real values of "x" satisfying tan^(-1)(x)+tan^(-1)(2x)=(pi)/(4) is

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The set of values of x satisfying |tan^(-1)x|>=|cot^(-1)x| is

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5) may be