Home
Class 12
MATHS
Solve the equations.tan^(-1)(1-x)/(1+x)=...

Solve the equations.`tan^(-1)(1-x)/(1+x)=1/2tan^(-1)x ,(x >0)`

Text Solution

Verified by Experts

The correct Answer is:
`x = (1)/(sqrt3)`

`tan^(-1) ((1 -x)/(1 + x)) = (1)/(2) tan^(-1) x, x gt 0`
If `x in (0,1)`
`tan^(-1) ((1 -x)/(1 + x)) = tan^(-1) 1 - tan^(-1) x`
Therefore, given equation reduces to
`tan^(-1) 1 - tan^(-1)x = (1)/(2) tan^(-1) x`
`rArr (pi)/(4) = (3)/(2) tan^(-1)x`
`rArr (pi)/(6) = tan^(-1) x`
`:. x = (1)/(sqrt3)`
For `x in (1, oo)`
`tan^(-1) ((1 - x)/(1 + x)) = pi + tan^(-1) 1 - tan^(-1) x = (5pi)/(4) - tan^(-1) x`
Therefore, given equation reduces to
`(5 pi)/(4) - tan^(-1) x = (1)/(2) tan^(-1) x`
or `(5pi)/(6) = tan^(-1) x`, which is not possible,
Hence, only one solution is `x = (1)/(sqrt3)`
Alternate Solution
`tan^(-1) ((1-x)/(1 + x)) = (1)/(2) tan^(-1) x`
`rArr 2 tan^(-1) ((1 - x)/(1 + x)) = tan^(-1) x`
`rArr tan^(-1).(2((1- x)/(1 + x)))/(1 - ((1 - x)/(1 + x))^(2)) = tan^(-1) x`
`rArr tan^(-1).(2(1 -x^(2)))/(4x) = tan^(-1) x`
`rArr 1 -x^(2) = 2x^(2)`
`rArr 3x^(2) =1`
`:. x = +- (1)/(sqrt3)`
But for `x = -(1)/(sqrt3)`, L.H.S. of (1) is `gt 0`, and R.H.S. is `lt 0`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve the equations.quad tan^(-1)(1-x)/(1+x)=(1)/(2)tan^(-1)x,(x>0)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solve for x:tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x,x>0

Solve for x:tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x,x>0

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = pi/4 , x gt 0

Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = tan^(-1) (8/31 ) , x gt 0

Solve the following equations : tan^(-1) (x+2) +tan^(-1) (x-2) = tan^(-1) (8/79)

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4