Home
Class 12
MATHS
If x + y + z = xyz and x, y, z gt 0, the...

If `x + y + z = xyz and x, y, z gt 0`, then find the value of `tan^(-1) x + tan^(-1) y + tan^(-1) z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \) given that \( x + y + z = xyz \) and \( x, y, z > 0 \). ### Step-by-Step Solution: 1. **Substituting Variables**: Let's set \( x = \tan A \), \( y = \tan B \), and \( z = \tan C \) for some angles \( A, B, C \). This means we will express \( \tan^{-1} x \), \( \tan^{-1} y \), and \( \tan^{-1} z \) in terms of these angles: \[ \tan^{-1} x = A, \quad \tan^{-1} y = B, \quad \tan^{-1} z = C \] 2. **Using the Given Condition**: The condition \( x + y + z = xyz \) translates to: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] 3. **Using the Tangent Addition Formula**: We know from the tangent addition formula that: \[ \tan(A + B + C) = \frac{\tan A + \tan B + \tan C}{1 - \tan A \tan B \tan C} \] Since \( \tan A + \tan B + \tan C = \tan A \tan B \tan C \), we can substitute this into the formula: \[ \tan(A + B + C) = \frac{\tan A \tan B \tan C}{1 - \tan A \tan B \tan C} \] 4. **Setting Up the Equation**: From the equation above, we can see that if we set \( A + B + C = \frac{\pi}{k} \) for some integer \( k \), then: \[ \tan(A + B + C) = \tan\left(\frac{\pi}{k}\right) \] This means that: \[ A + B + C = n\pi \quad \text{for some integer } n \] 5. **Conclusion**: Given that \( x, y, z > 0 \), we can conclude that \( A + B + C = \frac{\pi}{k} \) for \( k = 1 \) (the simplest case). Therefore: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \] ### Final Answer: \[ \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2} \]

To solve the problem, we need to find the value of \( \tan^{-1} x + \tan^{-1} y + \tan^{-1} z \) given that \( x + y + z = xyz \) and \( x, y, z > 0 \). ### Step-by-Step Solution: 1. **Substituting Variables**: Let's set \( x = \tan A \), \( y = \tan B \), and \( z = \tan C \) for some angles \( A, B, C \). This means we will express \( \tan^{-1} x \), \( \tan^{-1} y \), and \( \tan^{-1} z \) in terms of these angles: \[ \tan^{-1} x = A, \quad \tan^{-1} y = B, \quad \tan^{-1} z = C ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x gt y gt 0 , then find the value of tan^(-1).(x)/(y) + tan^(-1) [(x + y)/(x -y)]

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + "cot"^(-1)(yz + 1)/(y - z) + "cot"^(-1)(zx + 1)/(z - x)

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are alos in A.P. then