Home
Class 12
MATHS
Find the sum cot^(-1) 2 + cot^(-1) 8 + c...

Find the sum `cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \ldots \) up to infinity, we first need to identify the pattern in the terms. 1. **Identify the general term**: The terms appear to follow a pattern. The \( n^{th} \) term can be expressed as: \[ a_n = \cot^{-1}(n^2 + 1) \] where \( n = 1, 2, 3, \ldots \) 2. **Use the cotangent addition formula**: We can use the identity: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1}\left(\frac{xy - 1}{x + y}\right) \] to combine terms. 3. **Combine terms**: Let's combine the first two terms: \[ \cot^{-1}(2) + \cot^{-1}(8) = \cot^{-1}\left(\frac{2 \cdot 8 - 1}{2 + 8}\right) = \cot^{-1}\left(\frac{16 - 1}{10}\right) = \cot^{-1}\left(\frac{15}{10}\right) = \cot^{-1}\left(\frac{3}{2}\right) \] 4. **Continue combining terms**: Next, we can combine \( \cot^{-1}\left(\frac{3}{2}\right) + \cot^{-1}(18) \): \[ \cot^{-1}\left(\frac{3}{2}\right) + \cot^{-1}(18) = \cot^{-1}\left(\frac{\frac{3}{2} \cdot 18 - 1}{\frac{3}{2} + 18}\right) = \cot^{-1}\left(\frac{27 - 1}{\frac{3}{2} + 18}\right) = \cot^{-1}\left(\frac{26}{\frac{39}{2}}\right) = \cot^{-1}\left(\frac{52}{39}\right) = \cot^{-1}\left(\frac{4}{3}\right) \] 5. **Generalize the pattern**: Continuing this process, we can see that the sum converges to a limit as \( n \) approaches infinity. The series can be simplified using the formula: \[ S = \sum_{n=1}^{\infty} \cot^{-1}(n^2 + 1) \] This series converges to \( \frac{\pi}{2} \). 6. **Final result**: Therefore, the sum \( S \) can be expressed as: \[ S = \frac{\pi}{2} \]

To find the sum \( S = \cot^{-1}(2) + \cot^{-1}(8) + \cot^{-1}(18) + \ldots \) up to infinity, we first need to identify the pattern in the terms. 1. **Identify the general term**: The terms appear to follow a pattern. The \( n^{th} \) term can be expressed as: \[ a_n = \cot^{-1}(n^2 + 1) \] where \( n = 1, 2, 3, \ldots \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find- cot^(-1)1+cot^(-1)2+cot^(-1)3

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :

Find the sum of the series cot^(-1) 7+cot^(-1)13+cot^(-1)21+cot^(-1)31+... to n terms

Prove that 2cot^(-1)5+ cot^(-1)7 + 2cot^(-1)8 =pi/4

Find the domain of cot x+cot^(-1)x

Find the value of cot(tan^(-1)a+cot^(-1)a)