Home
Class 12
MATHS
If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) =...

If `(sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2)` then find the range of a

A

`[-(3)/(4), (1)/(4)]`

B

`[-(3)/(4), (3)/(4)]`

C

`[-1, 1]`

D

`[-1, (3)/(4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a \pi^2\), we can follow these steps: ### Step 1: Use the identity for inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Let \(y = \sin^{-1} x\). Then, we can express \(\cos^{-1} x\) as: \[ \cos^{-1} x = \frac{\pi}{2} - y \] ### Step 2: Substitute into the equation Substituting \(\cos^{-1} x\) into the original equation gives: \[ y^2 - \left(\frac{\pi}{2} - y\right)^2 = a \pi^2 \] ### Step 3: Expand the expression Now, we expand \(\left(\frac{\pi}{2} - y\right)^2\): \[ \left(\frac{\pi}{2} - y\right)^2 = \left(\frac{\pi^2}{4} - \pi y + y^2\right) \] Thus, the equation becomes: \[ y^2 - \left(\frac{\pi^2}{4} - \pi y + y^2\right) = a \pi^2 \] ### Step 4: Simplify the equation Now, simplify the left-hand side: \[ y^2 - \frac{\pi^2}{4} + \pi y - y^2 = a \pi^2 \] This simplifies to: \[ \pi y - \frac{\pi^2}{4} = a \pi^2 \] ### Step 5: Solve for \(y\) Rearranging gives: \[ \pi y = a \pi^2 + \frac{\pi^2}{4} \] Dividing through by \(\pi\) (assuming \(\pi \neq 0\)): \[ y = a \pi + \frac{\pi}{4} \] ### Step 6: Find the range of \(y\) Since \(y = \sin^{-1} x\), we know that: \[ -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \] Substituting our expression for \(y\): \[ -\frac{\pi}{2} \leq a \pi + \frac{\pi}{4} \leq \frac{\pi}{2} \] ### Step 7: Solve the inequalities 1. For the left inequality: \[ a \pi + \frac{\pi}{4} \geq -\frac{\pi}{2} \] Simplifying gives: \[ a \pi \geq -\frac{\pi}{2} - \frac{\pi}{4} = -\frac{3\pi}{4} \] Dividing by \(\pi\) (assuming \(\pi > 0\)): \[ a \geq -\frac{3}{4} \] 2. For the right inequality: \[ a \pi + \frac{\pi}{4} \leq \frac{\pi}{2} \] Simplifying gives: \[ a \pi \leq \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] Dividing by \(\pi\): \[ a \leq \frac{1}{4} \] ### Step 8: Combine the results Combining both inequalities, we have: \[ -\frac{3}{4} \leq a \leq \frac{1}{4} \] ### Final Answer The range of \(a\) is: \[ \boxed{[-\frac{3}{4}, \frac{1}{4}]} \]

To solve the equation \((\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a \pi^2\), we can follow these steps: ### Step 1: Use the identity for inverse trigonometric functions We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Let \(y = \sin^{-1} x\). Then, we can express \(\cos^{-1} x\) as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(17 pi^(2))/(36), find x

If sin^(-1)(x^(2)-4x+5)+cos^(-1)(y^(2)-2y+2)=(pi)/(2) then find the value of x and y.

If sin^(-1)(e^(x))+cos^(-1)(x^(2))=(pi)/(2), then find the number of solutions of this equation

If p(x)=sin x(sin^(3)x+3)+cos x(cos^(3)x+4)+((1)/(2))sin^(2)2x+5 then find the range of p(x)

If sin^(-1)x+2cos^(-1)x=(2pi)/3 , then find x.

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

if: f(x)=(sin x)/(sqrt(1+tan^(2)x))-(cos x)/(sqrt(1+cot^(2)x)), then find the range of f(x)

Range of sin^(-1)x+cos^(-1)x+tan^(-1)x is [a pi,b pi] ,then the value of a+b=

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single)
  1. For 0<theta<2pi,sin^(-1)(sintheta)>cos^(-1)(sintheta)i st r u ew h e n...

    Text Solution

    |

  2. If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

    Text Solution

    |

  3. If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range ...

    Text Solution

    |

  4. The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/...

    Text Solution

    |

  5. The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1...

    Text Solution

    |

  6. f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical fu...

    Text Solution

    |

  7. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  8. If sin^(-1)(5/x)+sin^(-1)((12)/x)=pi/2, then x is equal to 7/(13) (b)...

    Text Solution

    |

  9. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  10. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  11. The product of all values of x satisfying the equation sin^(-1)cos((2x...

    Text Solution

    |

  12. The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-...

    Text Solution

    |

  13. If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) ...

    Text Solution

    |

  14. The solution set of the equation sin^(-1)sqrt(1-x^2)+cos^(-1)x=cot^(-1...

    Text Solution

    |

  15. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  16. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  17. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  18. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  19. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  20. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |