Home
Class 12
MATHS
theta = tan^(-1) (2 tan^(2) theta) - tan...

`theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=`

A

`-2`

B

`-1`

C

`2//3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \theta = \tan^{-1}(2 \tan^2 \theta) - \tan^{-1} \left(\frac{1}{3} \tan \theta\right) \), we will use the identity for the difference of inverse tangents. ### Step 1: Use the identity for the difference of inverse tangents We know that: \[ \tan^{-1} a - \tan^{-1} b = \tan^{-1} \left( \frac{a - b}{1 + ab} \right) \] Let \( a = 2 \tan^2 \theta \) and \( b = \frac{1}{3} \tan \theta \). Then we can rewrite the equation as: \[ \theta = \tan^{-1} \left( \frac{2 \tan^2 \theta - \frac{1}{3} \tan \theta}{1 + 2 \tan^2 \theta \cdot \frac{1}{3} \tan \theta} \right) \] ### Step 2: Simplify the expression Now, we simplify the numerator and the denominator: - **Numerator**: \[ 2 \tan^2 \theta - \frac{1}{3} \tan \theta = \frac{6 \tan^2 \theta - \tan \theta}{3} = \frac{6 \tan^2 \theta - \tan \theta}{3} \] - **Denominator**: \[ 1 + 2 \tan^2 \theta \cdot \frac{1}{3} \tan \theta = 1 + \frac{2}{3} \tan^3 \theta = \frac{3 + 2 \tan^3 \theta}{3} \] Thus, we can rewrite the equation as: \[ \theta = \tan^{-1} \left( \frac{6 \tan^2 \theta - \tan \theta}{3 + 2 \tan^3 \theta} \right) \] ### Step 3: Take the tangent of both sides Taking the tangent of both sides gives: \[ \tan \theta = \frac{6 \tan^2 \theta - \tan \theta}{3 + 2 \tan^3 \theta} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying yields: \[ \tan \theta (3 + 2 \tan^3 \theta) = 6 \tan^2 \theta - \tan \theta \] ### Step 5: Rearranging the equation Rearranging gives: \[ 3 \tan \theta + 2 \tan^4 \theta = 6 \tan^2 \theta - \tan \theta \] \[ 2 \tan^4 \theta - 6 \tan^2 \theta + 4 \tan \theta = 0 \] ### Step 6: Factor out the common term Factoring out \( \tan \theta \): \[ \tan \theta (2 \tan^3 \theta - 6 \tan \theta + 4) = 0 \] ### Step 7: Solve for \( \tan \theta \) This gives us two cases: 1. \( \tan \theta = 0 \) 2. \( 2 \tan^3 \theta - 6 \tan \theta + 4 = 0 \) ### Step 8: Solve the cubic equation Let \( x = \tan \theta \). The cubic equation becomes: \[ 2x^3 - 6x + 4 = 0 \] Dividing the entire equation by 2: \[ x^3 - 3x + 2 = 0 \] ### Step 9: Factor the cubic equation We can factor this equation: \[ (x + 2)(x^2 - 2x + 1) = 0 \] This gives us: \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] and \[ (x - 1)^2 = 0 \quad \Rightarrow \quad x = 1 \] ### Step 10: Conclusion Thus, the possible values for \( \tan \theta \) are: \[ \tan \theta = -2 \quad \text{or} \quad \tan \theta = 1 \] Since the question asks for the value of \( \tan \theta \), the answer is: \[ \boxed{-2} \]

To solve the equation \( \theta = \tan^{-1}(2 \tan^2 \theta) - \tan^{-1} \left(\frac{1}{3} \tan \theta\right) \), we will use the identity for the difference of inverse tangents. ### Step 1: Use the identity for the difference of inverse tangents We know that: \[ \tan^{-1} a - \tan^{-1} b = \tan^{-1} \left( \frac{a - b}{1 + ab} \right) \] Let \( a = 2 \tan^2 \theta \) and \( b = \frac{1}{3} \tan \theta \). Then we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

tan2 theta xx tan theta=1

tan2 theta tan theta=1

(1+tan^(2)theta)/(1-tan^(2)theta) =

(1+tan^(2)theta)/(1-tan^(2)theta) =

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single)
  1. The solution set of the equation sin^(-1)sqrt(1-x^2)+cos^(-1)x=cot^(-1...

    Text Solution

    |

  2. the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

    Text Solution

    |

  3. theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " th...

    Text Solution

    |

  4. If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4...

    Text Solution

    |

  5. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  6. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  7. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  8. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  9. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  10. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  11. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  12. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  13. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  14. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  15. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  16. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  17. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  18. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  19. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  20. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |