Home
Class 12
MATHS
The number of solution of the equation t...

The number of solution of the equation `tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2)` is

A

2

B

3

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of solutions for the equation \[ \tan^{-1}(1 + x) + \tan^{-1}(1 - x) = \frac{\pi}{2}, \] we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \tan^{-1}(1 + x) + \tan^{-1}(1 - x) = \frac{\pi}{2}. \] ### Step 2: Use the Identity for the Sum of Inverses We know that \[ \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{2} \quad \text{if} \quad ab = 1. \] In our case, let \( a = 1 + x \) and \( b = 1 - x \). Thus, we need to check if: \[ (1 + x)(1 - x) = 1. \] ### Step 3: Expand and Solve Expanding the left-hand side gives: \[ 1 - x^2 = 1. \] Subtracting 1 from both sides results in: \[ -x^2 = 0. \] ### Step 4: Solve for x This simplifies to: \[ x^2 = 0. \] Taking the square root of both sides, we find: \[ x = 0. \] ### Step 5: Conclusion Since we found only one value for \( x \), the number of solutions to the equation is: \[ \text{Number of solutions} = 1. \]

To find the number of solutions for the equation \[ \tan^{-1}(1 + x) + \tan^{-1}(1 - x) = \frac{\pi}{2}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

Solution of tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2) is:

The general solution of the equation tan ^(2) x=1 is

The general solution of the equation tan^(2)x=1 is

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single)
  1. If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1...

    Text Solution

    |

  2. The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),...

    Text Solution

    |

  3. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  4. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  5. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  6. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  7. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  8. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  9. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  10. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  11. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  12. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  13. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  14. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  15. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  16. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  17. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  18. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  19. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to sin^...

    Text Solution

    |

  20. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |