Home
Class 12
MATHS
The value of sin^(-1)[xsqrt(1-x)-sqrt(x)...

The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]` is equal to `sin^(-1)x+sin^(-1)sqrt(x)` `sin^(-1)x-sin^(-1)sqrt(x)` `sin^(-1)sqrt(x)-sin^(-1)x` none of these

A

`sin^(-1) x + sin^(-1) sqrtx`

B

`sin^(-1) x - sin^(-1) sqrtx`

C

`sin^(-1) sqrtx - sin^(-1) x`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Let `x = sin theta and sqrtx = sin phi, " where " x in [0, 1]`
`rArr theta, phi in [0, pi//2]`
`rArr theta - phi in [(-pi)/(2), (pi)/(2)]`
Now, `sin^(-1) (x sqrt(1 -x) - sqrtx sqrt(1 - x^(2)))`
`= sin^(-1) (sin theta sqrt(1 - sin^(2) phi) - sin phi sqrt(1 - sin^(2) theta))`
`= sin^(-1) (sin theta cos phi - sin phi cos theta)`
`= sin^(-1) sin (theta - phi) = theta - phi`
`= sin^(-1) (x) - sin^(-1) (sqrtx)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+sin^(-1)sqrt(1-x)=(pi)/(2)

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

(sin^(-1)x)/(sqrt(1-x^(2))

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single)
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to sin^...

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^2pi//sin^((-1)x)-2(a+2)^pi//sin^((-1)x)+8a<0 for at least one rea...

    Text Solution

    |