Home
Class 12
MATHS
If nin N and the set of equations, (sin^...

If `nin N` and the set of equations, `(sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/4 and (sin^-1y)^2 - (cos^-1 x) = pi^2/16` is consistent,then n can be equal to-

A

`cos.(pi^(2))/(8)`

B

`sin.(pi^(2))/(4)`

C

`cos.(pi^(2))/(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

Let `cos^(-1) x = a rArr a in [0, pi]`
and `sin^(-1) y = b rArr b in [-pi//2, pi//2]`
We have `a + b^(2) = (p pi^(2))/(4)`...(i)
and `ab^(2) = (pi^(4))/(16)`..(ii)
since `b^(2) in [0, pi^(2)//4]`, we get `a + b^(2) in [0, pi + pi^(2)//4]`
So, from Eq. (i) we get `0 le (p pi^(2))/(4) le pi + (pi^(2))/(4)`
i.e., `0 le p le (4)/(pi) + 1`
Since `p in Z, " so " p = 0, 1 " or " 2`
Substituting the value of `b^(2)` from Eq. (i) Eq. (ii), we get
`a((p pi^(2))/(4) -a) = (pi^(4))/(16)`
`rArr 16a^(2) - 4p pi^(2) a + pi^(4) = 0`...(iii)
Since `a in R, " we have " D ge 0`
i.e., `16^(2) ge 4 - 64 pi^(4) ge 0`
or `p^(2) ge 4 " or " p ge 2 " or " p =2`
Substituting `p =2` in Eq. (iii), we get
`16a^(2) -8pi^(2) a + pi^(4) = 0`
or `(4a - pi^(2))^(2) = 0`
or `a = (pi^(2))/(4) = cos^(-1) x " or " x = cos.(pi^(2))/(4)`
From Eq. (ii), we get `(pi^(2))/(4) b^(2) = (pi^(4))/(16)`
or `b = +- (pi)/(2) = sin^(-1) y " or " y = +- 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If n in N and the set of equations,(sin^(-1)y)^(2)+(cos^(-1)x)=(n pi^(2))/(4) and (sin^(-1)y)^(2)-(cos^(-1)x)=(pi^(2))/(16) is consistent,then n can be equal to-

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then

Solve the following equations/system of equations sin^(-1) x+sin^(-1)y=(2pi)/(3) & cos^(-1)x-cos^(-1)y=pi/3

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Comprehension)
  1. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  2. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  3. For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - s...

    Text Solution

    |

  4. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  5. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  6. If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1...

    Text Solution

    |

  7. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  8. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  9. If nin N and the set of equations, (sin^-1 y)^2 + (cos^-1 x)=(n pi^2)/...

    Text Solution

    |

  10. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)),...

    Text Solution

    |

  11. Let cos^-1(4 x^3-3 x)=a+b cos^-1 x . If x in [-1/2,-1], then a+b pi=

    Text Solution

    |

  12. Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1], t...

    Text Solution

    |

  13. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  14. Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a +...

    Text Solution

    |

  15. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |

  16. Consider the function f(x) = sin^(-1)x, having principal value branch ...

    Text Solution

    |