Home
Class 12
MATHS
Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1...

Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))` , where `|x|<1/(sqrt(3))` . Then a value of y is : (1) `(3x-x^3)/(1-3x^2)` (2) `(3x+x^3)/(1-3x^2)` (3) `(3x-x^3)/(1+3x^2)` (4) `(3x+x^3)/(1+3x^2)`

A

`(3x -x^(3))/(1 -3x^(2))`

B

`(3x + x^(3))/(1 - 3x^(2))`

C

`(3x -x^(3))/(1 + 3x^(2))`

D

`(3x + x^(3))/(1 + 3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`(-1)/(sqrt3) lt x lt (1)/(sqrt3)`
Let `x = tan theta`
`:. (-pi)/(6) lt theta lt (pi)/(6)`
`:. Tan^(-1) y = theta + tan^(-1) tan 2 theta = theta + 2theta = 3 theta`
`:. Y = tan 3 theta = (3 tan theta - tan^(3) theta)/(1-3 tan^(2) theta)`
`:. y = (3x -x^(3))/(1 -3x^(2))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|231 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =______.

Solve for x : tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)2/3 , where x sqrt(3)

tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)((1)/(a^(2)-x+1))

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Solve for x : tan^(-1)(x+2)+tan^(-1)(x-2)=tan^(-1)(8/(79)) , x >0

If y=tan^(-1)(1+2x)+tan^(-1)(1-2x),"then "dy/dx=

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))