Home
Class 12
MATHS
For any positive integer n , define fn...

For any positive integer `n` , define `f_n :(0,oo)rarrR` as `f_n(x)=sum_(j=1)^ntan^(-1)(1/(1+(x+j)(x+j-1)))` for all `x in (0, oo)` . Here, the inverse trigonometric function `tan^(-1)x` assumes values in `(-pi/2,pi/2)dot` Then, which of the following statement(s) is (are) TRUE? `sum_(j=1)^5tan^2(f_j(0))=55` (b) `sum_(j=1)^(10)(1+fj '(0))sec^2(f_j(0))=10` (c) For any fixed positive integer `n` , `(lim)_(xrarroo)tan(f_n(x))=1/n` (d) For any fixed positive integer `n` , `(lim)_(xrarroo)sec^2(f_n(x))=1`

A

`underset(j = 1)overset(5)sum tan^(2) (f_(j) (0)) = 55`

B

`underset(j =1)overset(10)sum (1 + f'_(j)(0)) sec^(2) (f_(j) (0)) = 10`

C

For any fixed positive inetger `n, underset(x rarr oo)("lim") tan (f_(n) (x)) = (1)/(n)`

D

For any fixed positive integer `n, underset(x rarr oo)("lim") sec^(2) (f_(n) (x)) = 1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`f_(n) (x) = underset(j =1)overset(n)sum tan^(-1) ((1)/(1 + (x + j) (x + j -1)))`
`= underset(j =1)overset(n)sum tan^(-1) (((x + j) - (x + j -1))/(1+(x +j) (x+j -1)))`
`= underset(j=1)overset(n)sum [tan^(-1) (x + j)-tan^(-1) (x + j -1)]`
`:. f_(n) (x) = tan^(-1) (x + n) - tan^(-1) (x)`
(1) `f_(n) (0) = tan^(-1) (n)`
`rArr tan^(2) (f_(n) (0)) = tan^(2) (tan^(-1) n) = n^(2)`
`underset(j =1)overset(5)sum tan^(2) (f_(j) (0)) = underset(j=1)overset(5)sum j^(2) = (5 xx 6 xx 11)/(6) = 55`
(2) `f'_(n) (x) = (1)/(1 + (x + n)^(2)) - (1)/(1 + x^(2))`
`rArr f'_(n) (0) = (1)/(1+ n^(2)) -1`
`rArr 1 + f'_(n) (0) = (1)/(1 + n^(2))`
Also, `sec^(2) (f_(n) (0)) = sec^(2) (tan^(-1) (n)) = 1 + n^(2)`
Hence, `(1 + f'_(n) (0)). sec^(2) (f_(n)(0)) = ((1)/(1 + n^(2))) (1 + n^(2)) =1`
So, `underset(j =1)overset(10)sum (1 + f'_(i)(0)) sec^(2) (f_(i) (0)) = underset(i=1)overset(10)sum 1 = 10`
(3) `underset(x rarr oo)("lim") tan (f_(n)(x)) = underset(x rarroo)("lim") (n)/(1 + x (n + x)) = 0`
(4) `underset(x rarroo)("lim") sec^(2) (f_(n) (x)) = underset(x rarr oo)("lim") (1 + tan^(2) (f_(n) (x))) = 1`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|231 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

For any positive integer n . let S_n:(0,oo) to R be defined by S_n(x)=sum_(k=1)^n Cot^-1((1+k(k+1)x^2)/x) where for any x in R , cot^-1x in (0,pi) and tan^-1(x) in (-pi/2, pi/2) .Then which of the following statement is(are TRUE ?

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If x_(0)=sum_(n=1)^(oo)tan^(-1)((4n)/(n^(4)-2n^(2)+3)), then which of the following is/are correct

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is