Home
Class 12
MATHS
The number of real solution of the equat...

The number of real solution of the equation
`sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i))`
`= (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i))` lying in the interval `(-(1)/(2), (1)/(2))` is ______.
(Here, the inverse trigonometric function `sin^(-1) x and cos^(-1) x` assume values in `[-(pi)/(2), (pi)/(2)] and [0, pi]` respectively)

Text Solution

Verified by Experts

The correct Answer is:
2

Given equation is
`sin^(-1) (underset(i =1)overset(oo)sum x^(i+1) -x underset(i=1)overset(oo)sum ((x)/(2))^(i) ) + cos^(-1) (underset(i=1)overset(oo)sum (-(x)/(2))^(i) -underset(i=1)overset(oo)sum (-x)^(i)) = (pi)/(2)`
`:. underset(i=1)overset(oo)sum x^(i +1)-x underset(i=1)overset(oo)sum ((x)/(2))^(i) = underset(i=1)overset(oo)sum (-(x)/(2))^(i) - underset(i=1)overset(oo)sum (-x)^(i)`
`rArr (x^(2))/(1-x) -x ((x)/(2))/(1-(x)/(2)) = (x)/(1 +x) + ((- (x)/(2)))/(1 + (x)/(2))` (Each series is infinite G.P.)
`rArr (x^(2))/(1 -x) -(x^(2))/(2 -x) = (x)/(1 + x) - (x)/(2 + x)`
`rArr x = 0 "or " (x)/(1-x) -(1)/(1 + x) = (x)/(2-x) -(1)/(2 + x)`
`rArr x = 0 " or " (x + x^(2) -1 + x)/(1 -x^(2)) = (2x + x^(2) -2 + x)/(4 -x^(2))`
`rArr x = 0 " or " (x^(2) + 2x -1) (4 -x^(2)) = (x^(2) + 3x -2) (1 -x^(2))`
`rArr 4x^(2) + 8x -4 - x^(4) -2x^(3) + x^(2) = x^(2) + 3x -2 -x^(4) - 3x^(3) + 2x^(2)`
`rArr x^(3) + 2x^(2) + 5x -2 = 0`
Let `f(x) = x^(3) + 2x^(2) + 5x -2`
`:. f'(x) = 3x^(2) + 4x + 5 gt 0`
So, `f(x)` is increasing function and it intersects x-axis only once.
`f(0) = -2 and f(1//2) = 9//8`
So, one root of `fs (x) = 0` lies in (0, 1/2)
So, there are two value of x
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|231 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation sin^(-1)(sum_(i=1)^oox^(i+1)-xsum_(i=1)^oo(x/2)^i)=pi/2-cos^(-1)(sum_(i=1)^oo(-x/2)^i-sum_(i=1)^oo(-x)^i) lying in the interval (-1/2,1/2) is ____. (Here, the inverse trigonometric function =sin^(-1)x and cos^(-1)x assume values in [pi/2,pi/2] and [0, pi] , respectively.)

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(2^(i+j+k)) is equal to

If sum_(r = 1)^(oo) (1)/((2r - 1)^2) = (pi^2)/(8) then the value of sum_(r = 1)^(oo) (1)/(r^2) is

sum_ (i = 0)^(oo) sum_ (j = 0)^(oo) sum_ (k = 0)^(oo) (1)/(3^(i) 3^(i) 3^(k) )

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

If sum_(i=1)^(n)(x_(i)-2)=110, sum_(i=1)^(n)(x_(i)-5)=20 , then what is the mean?