Home
Class 12
MATHS
lim(n->oo)(1+2+3+4+.....+n)/(n^2)=1/2...

`lim_(n->oo)(1+2+3+4+.....+n)/(n^2)=1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Evaluate the following limits : Lim_(n to oo) (1+2+3+...+n)/(n^(2)) ( or Lim_(x to oo) (Sigman)/(n^(2)))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))