Home
Class 12
MATHS
If lim(x->oo)(sqrt(x^4-x^2+1)-a x^2-b)=...

If `lim_(x->oo)(sqrt(x^4-x^2+1)-a x^2-b)=0`, then there existat least one a and b for which point `(a,-4b)` lies on the line

Promotional Banner

Similar Questions

Explore conceptually related problems

If (lim)_(x->oo)(sqrt((x^4-x^2+1))-a x^2-b)=0 , then there exists at least one a\ a n d\ b for which point (a,-2b) lies on the line.

lim_(x rarr oo)(sqrt(x^(2)-x-1)-ax-b)=0 where a>0, then there exists at least one a and b for which point (a,2b) lies on the line

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

If lim_(x rarr-a)(x^(7)+a^(7))/(x+a)=7, where a<0 then there exists at least one a for which point (a,2) where lies on the line

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x rarr oo)(sqrt(x-a)-sqrt(x-b))

If lim_(x to oo) [ (x^(3)+1)/(x^(2)+1)-(ax+b)]=2 , then the values of a and b are -

If lim_(x to oo) (sqrt(x^(2) -x+1) -ax)=b , then the ordered pair (a, b) is :

lim_(x to oo)(sqrt(x^2-x+1)-ax)=b Find the value of 2(a+b) is