Home
Class 11
MATHS
If f(x)=ax+b and g(x)=cx+d, then f(g(x))...

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = ax + b and g(x) = cx + d, then f(g(x))=g(f(x)) implies

Let f(x)=px+qandg(x)=mx+n." Then "f(f(x))=g(f(x)) is equivalent to

If f(x)=(ax)/b and g(x)=(cx^2)/a , then g(f(a)) equals

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If F(x)=f(x)g(x) and f'(x)g'(x)=c , then (F'''(x))/(F(x)) is equal to (where f'(x) denotes differentiation w.rt. x and c is constant) (i) (f')/(f)+(g')/(g) (ii) (f'')/(f)+(g'')/(g) (iii) (f''')/(f)-(g''')/(g) (iv) (f''')/(f)+(g''')/(g)

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=ax+b and g(x)=cx+d are such that (fog)(x)=(gof)(x) , then which one of the following is correct ?

If f(x)=log_ex and g(x)=e^x , prove that f{g(x)}=g{f(x)} .