Home
Class 12
MATHS
L t(x->0)(sqrt(4+x)-(8+3x)^(1/3))/x=...

`L t_(x->0)(sqrt(4+x)-(8+3x)^(1/3))/x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(4+x)-(8+3x)^((1)/(3)))/(x)=

Lt_(x to 0) (sqrt(4 +x)-root(3)(8+3x))/(x) =

lim_(x rarr0)(sqrt(4)+x-root(3)(8+3x))/(x) (a) -1/2 (b ) \ \ \ 1/2 (c) -3 (d) \ \ \ 0

lim_(x rarr+oo)(20+2sqrt(x)+3x^(1/3))/(2+sqrt(4x-3)+(8x-4)^(1/2))=

Lt_(x to 0) (sqrt(4+x)-""^(3) sqrt(8+x))/(x)=

Differentiate the following functions w.r.t. x (x(sqrt(x^2+4))/((3x+2)^(2//3)) , x > 0

lim_(x rarr 5) (sqrt(2x-3)-sqrt(3x-8))/(sqrt(2x-1)-sqrt(3x-6))= _______.

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to