Home
Class 11
MATHS
The following consecutive terms (1)/(1+s...

The following consecutive terms `(1)/(1+sqrt(x)),(1)/(1-x),(1)/(1-sqrt(x))` of a series are in

Promotional Banner

Similar Questions

Explore conceptually related problems

The consecutive numbers (1)/(1+sqrt(n)),(1)/(1-n),(1)/(1-sqrt(n)) of a series are in :

The consecutive numbers (1)/( 1 + sqrt( n )) , ( 1)/( 1-n) , ( 1)/( 1- sqrt( n )) of a series are in :

The fourth term of the sequence 1/(1+sqrt(x)),1/(1-x),1/(1-sqrt(x)), ..... is: a. 1/(1-2sqrt(x)) b. 1/(2-sqrt(x)) c. (1+2sqrt(x))/(1-x) d. none of these

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

-int(1)/(sqrt(1-x)+sqrt(1+x))(-(1)/(2sqrt(1-x))+(1)/(2sqrt(1+x)))xdx

Solve (sqrt(x)+1+sqrt(x)-1)/(sqrt(x)+1-sqrt(x)-1)