Home
Class 12
MATHS
Statement 1: | vec a|=3,| vec b|= 4 a n ...

Statement 1: `| vec a|=3,| vec b|= 4 a n d | vec a+ vec b|=5,t h e n| vec a- vec b|=5.` Statement 2: The length of the diagonals of a rectangle is the same.

Promotional Banner

Similar Questions

Explore conceptually related problems

if | vec a | = 3, | vec b | = 4, | vec a-vec b | = 5 then | vec a + vec b | =?

If | vec axx vec b|=4,\ | vec adot vec b|=2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

Statement 1: If |vec a+vec b|=|vec a-vec b|, then vec a and vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude,then the parallelogram is a rectangle.

If | vec A| = 2, | vec B| =5 and | vec A xx vec B | =8 , din the value of (vec A. vec B0 .

If |vec a|=1=|vec b| and |vec a + vec b|=sqrt3 then evaluate (2 vec a - vec b) * (3 vec a + vec b) .

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

If |vec(a)|=3, |vec(b)|=4 and |vec(a)-vec(b)|=5 , then what is the value of |vec(a)+vec(b)|=?

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5 , then what si the value of |vec(a) + vec(b)| =?