Home
Class 12
MATHS
The vectors 2i+3 hat j ,5 hat i+6 hat j ...

The vectors `2i+3 hat j ,5 hat i+6 hat j` and 8` hat i+lambda hat j` have initial points at (1, 1). Find the value of `lambda` so that the vectors terminate on one straight line.

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \( \lambda \) such that the vectors \( 2\hat{i} + 3\hat{j} \), \( 5\hat{i} + 6\hat{j} \), and \( 8\hat{i} + \lambda\hat{j} \) are collinear, meaning they lie on the same straight line when their initial point is at (1, 1). ### Step-by-Step Solution: 1. **Identify the terminal points of the vectors**: - For the vector \( 2\hat{i} + 3\hat{j} \): - Initial point: \( (1, 1) \) - Terminal point: \( (1 + 2, 1 + 3) = (3, 4) \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+lambda hat(j)+5hat(k) are coplanar, then the value of lambda is

If vectors vec(a) = 3 hat(i) + hat(j) - 2 hat(k) and vec(b) = hat(i) + lambda(j) - 3 hat (k) are perpendicular to each other , find the value of lambda .

The vectors 3 hat i- hat j +2 hat k', 2 hat i+hat j + 3 hat k and hat i + lambda hat j - hat k are coplaner if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

Find the values of 'x' and 'y' so that vectors 2hat(i)+3hat(j) and x hat(i)+y hat(j) are equal.

If the vectors 5hat(i)+2hat(j)-hat(k) and lambda hat(i)-hat(j)+5hat(k) are orthogonal vectors, then the value of lambda is :

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

If vectors hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3hat(j) - a hat(k) are equal vectors, then the value of a is :

Find the projection of the vector hat i-hat j on the vector hat i+hat j