Home
Class 11
MATHS
Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and...

Let `f(x) =(kcosx)/(pi-2x)` if `x!=pi/2` and `f(x=pi/2)` if `x=pi/2`then find the value of `k` if `lim_(x->pi/2) f(x)=f(pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

Given f'(x) = (cos x )/( x ), ,f ((pi)/(2)) =a, f ((3pi)/(2))=b. Find the vlaue of the definite integral int _( pi//2) ^(3pi//2) f (x) dx.

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

If the function f(x) = (1-sinx)/(pi-2x)^2 , x!=pi/2 is continuous at x=pi/4 , then find f(pi/2) .

If f(x)=cos[pi^2]x+cos[-pi^2]x then the value of f(pi/4)+f(pi/2) is

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xrarr(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

Let f(x) = (1-sin x)/((pi - 2x)^(2)),"where x" ne pi//2 and f(pi//2) = k . The value of k which makes f continuous at pi//2 is :