Home
Class 12
MATHS
In a n- sided regular polygon, the proba...

In a `n-` sided regular polygon, the probability that the two diagonal chosen at random will intersect inside the polygon is: (a.)`(2^n C_2)/(^(^(n C_(2-n)))C_2)` (b.) `("^(n(n-1))C_2)/(^(^(n C_(2-n)))C_2)` (c.) `(^n C_4)/(^(^(n C_(2-n)))C_2)` (d.) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

C_(0)^(n)C_(n)^(n+1)+C_(1)^(n)C_(n-1)^(n)+C_(2)^(n)*C_(n-2)^(n-1)+.........+C_(n)^(n)*C_(0)^(1)=2^(n-1)(n+2)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

(.^(n)C_(1))/(2)-(2(.^(n)C_(2)))/(3)+(3(.^(n)C_(3)))/(4)-....+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)=

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

2*^(n)C_(0)+2^(2)*(*^(n)C_(1))/(2)+2^(3)*(*^(n)C_(2))/(3)+...+2^(n+1)*(*^(n)C_(n))/(n+1)=

(*^(n)c_(0))^(2)+3(.^(n)C_(1))^(2)+5(.^(n)C_(2))^(2)+ ......+(2n+1)(.^(n)C_(n))^(2)