Home
Class 11
MATHS
If a gt 0, b gt 0, c gt0 are respectivel...

If `a gt 0, b gt 0, c gt0` are respectively the pth, qth, rth terms of a G.P., then the value of the determinant
`|(log a,p,1),(log b,q,1),(log c,r,1)|`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If a , b , c are all positive and are pth ,qth and rth terms of a G.P., then show that =|(loga, p,1),(logb, q,1),(logc ,r,1)|=0

l,m,n are the pth , qth rth terms of a G.P. (all positive) , then |(log l,p,1),(logm,q,1),(logn,r,1)| equals :

If a,b,c are respectively the pth ,qth and rth terms of a G.P. then (q-r) log a +(r-p) log b+(p-q) log c=

If agt0,bgt0,cgt0 be respectively the pth, qth and rth terms of a G.P. are a, b ,c , prove that : (q-r) log a+ (r -p) log b + (p -q) log c = 0 .

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of |(loga, p, 1),(logb, q, 1),(logc, r, 1)|= (A) 1 (B) pqr(loga+logb+logc) (C) 0 (D) a^pb^qc^r