Home
Class 12
MATHS
Let vec A(t) = f1(t) hat i + f2(t) hat ...

Let `vec A(t) = f_1(t) hat i + f_2(t) hat j and vec B(t) = g(t)hat i+g_2(t) hat j,t in [0,1],f_1,f_2,g_1 g_2` are continuous functions. If `vec A(t) and vec B(t)` are non-zero vectors for all `t and vec A(0) = 2hat i + 3hat j,vec A(1) = 6hat i + 2hat j, vec B(0) = 3hat i + 2hat i and vec B(1) = 2hat j + 6hat j` Then,show that `vec A(t) and vec B(t)` are parallel for some `t`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot

vec a=hat i+2hat j+3hat k,vec b=-hat i+2hat j+hat k and vec c=3hat i+hat j then t,such that vec a+tvec b is perpendicular to vec c, will be

If vec a=3 hat i- hat j+2 hat k\ a n d\ vec b=2 hat i+ hat j- hat k\ t h e n find ( vec axx vec b) vec adot

If vec(A) = 3 hat(i) - 4 hat(j) and vec(B) = 2 hat(i) + 16 hat(j) then the magnitude and direction of vec(A) + vec(B) will be

If vec A=hat i+2hat j+3hat k and vec B=-hat i+2hat j+hat k and vec C=3hat i+hat j then find the value of t if vec A=tvec B is perpendicular to vec C

[vec a,vec b,vec c], when vec a=2hat i-3hat j+4hat k,vec b=hat i+2hat j-hat k and vec c=3hat i-hat j+2hat k

Find [vec avec bvec c], when :vec a=2hat i-3hat j,vec b=hat i+hat j-hat k and vec c=3hat i-hat k

vec a=3hat i-hat j,vec b=hat i-2hat j,vec c=-hat i+7hat j and vec p=vec a+vec b+vec c Then vec p in terms of vec a and vec b is