Home
Class 11
MATHS
Prove that (i)lim(x->0) (a^x-1)/x=loge a...

Prove that (i)`lim_(x->0) (a^x-1)/x=log_e a` (ii) `lim_(x->0) log_(1+x)/x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Show that : lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Prove that: lim_(x to0)log(1+sinx)/(x)=1

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|

Prove that, lim_(x rarr 0) (5^(x)-4^(x))/(x)=log_(e)((5)/(4))

Prove that lim_(x to 0) sinx/(log_e (1+x)^(1/2)) = 2

lim_(x rarr 0) [[(log(1+x))]/x]=

lim_(x rarr0)(log_(e)(1+x))/(x)