Home
Class 12
MATHS
If A+B+C=pi, prove that : tan( A/2) tan ...

If `A+B+C=pi`, prove that : `tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF A+B+C=pi ,then prove that tan (A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

v) tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

IF A+B+C =pi , then tan ((A)/(2)) tan ((B)/(2)) + tan (B/2) tan (C/2) + tan (C/2 ) tan ((A)/(2)) is

If A+B+C=pi, show that : tan.(A)/(2)tan.(B)/(2)+tan.(B)/(2)tan.(C)/(2)+tan.(C)/(2)tan.(A)/(2)=1 Hence deduce that : cot.(A)/(2)+cot.(B)/(2)+.cot.(C)/(2)=cot.(A)/(2).cot.(B)/(2)tan.(C)/(2) .

If A+B+C=pi, prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)geq1.

(tan(B/2)-tan(C/2))/(tan(B/2)+tan(C/2))

In triangleABC,A+B+C=pi , show that tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

If A + B + C = 180^(@) , prove that tan ""(A)/(2) tan ""(B)/(2) + tan ""(B)/(2) tan""( C)/(2) +tan""(C)/(2) tan"" (A)/(2) = 1

If A + B + C =pi/2 , prove that : tan A tan B + tan B tanC +tanC tan A=1 .

If A+B+C=pi, then the value of (tan ""A/2 tan ""B/2+tan ""B/2 tan ""C/2 + tan ""C/2 tan ""A/2) is-