Home
Class 12
MATHS
lim(x -> 1) (1- x + [x-1] + [1-x]) = whe...

`lim_(x -> 1) (1- x + [x-1] + [1-x]) =` where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto1)({1-x+[x-1]+[1-x]} (where [.] denotes the greatest integral function) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

If lim_(x rarr1)(3-x+a[x-1]+b[x+1]) exists (where [ ] denotes the greatest integer function),then value of a + b

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim _(x rarr 1) (xsin(x−[x])) /(x-1) ​ , where [.] denotes the greatest integer function, is equal to

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to