Home
Class 12
MATHS
In a triangle ABC, prove that : a sin (A...

In a triangle `ABC`, prove that : `a sin (A/2 + B)=(b+c) sin (A/2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that : a sin (A/2+B)= (b +c) sin frac (A)(2) .

In any triangle ABC, prove that : sin (A + B) = sin C .

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In triangle ABC , prove that sinA=sin(B+C)

In any triangle ABC, prove that : a sin (B -C) + b sin (C -A) +c sin (A-B) = 0 .

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

In any triangle ABC, prove that : a (cos B + cos C) = 2 (b +c) sin^2 frac (A)(2) .

In any triangle ABC, prove that : (a sin(B-C))/(b^2-c^2)= (b sin (C-A))/(c^2-a^2)= (c sin (A-B))/(a^2-b^2) .

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0