Home
Class 12
MATHS
Show that the distance between the point...

Show that the distance between the points `P(acosalpha, asinalpha)` and `Q(a sin beta,a sinbeta)` is `2a sin(a-b)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that the distance between the points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \sin \beta, a \sin \beta) \) is \( 2a \sin \left( \frac{\alpha - \beta}{2} \right) \), we will follow these steps: ### Step 1: Write the Distance Formula The distance \( d \) between two points \( P(x_1, y_1) \) and \( Q(x_2, y_2) \) is given by the formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] In our case, the coordinates of the points are: - \( P(a \cos \alpha, a \sin \alpha) \) - \( Q(a \sin \beta, a \sin \beta) \) ### Step 2: Substitute the Coordinates Substituting the coordinates of points \( P \) and \( Q \) into the distance formula: \[ d = \sqrt{(a \sin \beta - a \cos \alpha)^2 + (a \sin \beta - a \sin \alpha)^2} \] ### Step 3: Factor out \( a^2 \) We can factor out \( a^2 \) from the square root: \[ d = \sqrt{a^2 \left( (\sin \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2 \right)} = a \sqrt{(\sin \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2} \] ### Step 4: Expand the Squares Now we will expand the squares inside the square root: \[ d = a \sqrt{(\sin^2 \beta - 2 \sin \beta \cos \alpha + \cos^2 \alpha) + (\sin^2 \beta - 2 \sin \beta \sin \alpha + \sin^2 \alpha)} \] ### Step 5: Combine Like Terms Combining the terms gives: \[ d = a \sqrt{2 \sin^2 \beta - 2 \sin \beta (\cos \alpha + \sin \alpha) + (\cos^2 \alpha + \sin^2 \alpha)} \] Using the identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ d = a \sqrt{2 \sin^2 \beta - 2 \sin \beta (\cos \alpha + \sin \alpha) + 1} \] ### Step 6: Use the Cosine of Angle Difference Now we will use the cosine of the angle difference formula: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] This implies: \[ 1 - \cos(\alpha - \beta) = 2 \sin^2\left(\frac{\alpha - \beta}{2}\right) \] Thus, we can rewrite the distance as: \[ d = 2a \sin\left(\frac{\alpha - \beta}{2}\right) \] ### Final Result Thus, we have shown that: \[ d = 2a \sin\left(\frac{\alpha - \beta}{2}\right) \]

To show that the distance between the points \( P(a \cos \alpha, a \sin \alpha) \) and \( Q(a \sin \beta, a \sin \beta) \) is \( 2a \sin \left( \frac{\alpha - \beta}{2} \right) \), we will follow these steps: ### Step 1: Write the Distance Formula The distance \( d \) between two points \( P(x_1, y_1) \) and \( Q(x_2, y_2) \) is given by the formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] In our case, the coordinates of the points are: ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Distance between the points A(acosalpha, "asin alpha) and B(acosbeta," asinbeta) is equal to

The distance between the points (a cos alpha,a sin alpha) and (a cos beta,a sin beta) where a>0

The distance between the points (a cos alpha,a sin alpha) and (a cos beta,a sin beta) where a> 0

What is the distance between the points P(m cos2 alpha,m sin2 alpha) and Q(m cos2 beta,m sin2 beta)

1. Find the distance between the following points.(i) (a cos alpha, a sin alpha) and (a.cos beta, a sin beta)

Evaluate the distance between the points (asinalpha,-bcosalpha)and(-acosalpha,bsinalpha) .

If the distance between two points (a cos theta,a sin theta) and (a cos phi,a sin phi) is 2a then theta is

The distance between the points (a cos theta+b sin theta,0) and (0,a sin theta-b cos theta) is a^(2)+b^(2)(b)a+ba^(2)-b^(2)(d)sqrt(a^(2)+b^(2))

If alpha-beta= constant,then the locus of the point of intersection of tangents at P(a cos alpha,b sin alpha) and Q(a cos beta,b sin beta) to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 is a circle (b) a straight line an ellipse (d) a parabola