Home
Class 12
MATHS
In each of the following, check how the ...

In each of the following, check how the points A,B and C are situated.
(i) `A(-2,2),B(8,-2),C(-4,-3)`
(ii) `A(-a,-b),B(a,b),C(a^2,ab),agt1`
(iii) `A(4,0),B(-1,-1),C(3,5)`

Text Solution

Verified by Experts

The correct Answer is:
(i) ABC is triangle right angled at A
(ii) collinear points
(iii) ABC is right angled isoceles triangle

(i) `A(-2,2), B((8,-2),C(-4,-3)`
`AB=sqrt((8-(-2))^2+(-2-2)^(2))`
`=sqrt(100+16)=2sqrt(29)`
`BC=sqrt((8-(-4))^2+(-2-(-3))^(2))`
`=sqrt(144+1)=sqrt(5)=sqrt(29)`
`CA=sqrt((-2-(-4))^2+(2-(-3))^(2))`
`=sqrt(4+25)=sqrt(29)`
Thus, `AB^2+CA^2=BC^2`
So, triangle is right angled at A.
(ii) `A(-a,-b),B(a,b),C(a^2,ab)`
`AB=sqrt((2a)^2+(2b)^(2))=2sqrt(a^2+b^(2))`
`BC=sqrt((a^2-a)^2+b^2(a-1)^(2))=(a-1)sqrt(a^2+b^(2)`
`AC=sqrt((a^2+a)^2+b^2(a+1)^(2))=(a+1)sqrt(a^2+b^2)`
Thus, `AB+BC=AC`.
So, points are collinear.
(iii) `A(4,0),B(-1,-1),C(3,5)`.
`AB=sqrt((-1-4)^2+b^2(-1-0)^(2))=sqrt(25+1)=sqrt(26)`
`BC=sqrt((3+1)^2+b^2(5+1)^(2))=sqrt(16+36)=sqrt(52)`
`CA=sqrt((4-3)^2+b^2(0-5)^(2))=sqrt(1+25)=sqrt(26)`
Thus, `AB=CA and BC62=AB^2+CA62`
So, triangle ABC is right angled isoceles.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.3|10 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Show that the following points are collinear: (i) A(2, -2), B(-3, 8) and C(-1, 4) (ii) A(-5, 1), B(5, 5) and C(10, 7) (iii) A(5, 1), B(1, -1) and C(11, 4) (iv) A(8, 1), B(3, -4) and C(2, -5)

Using vectors, find the area of Delta ABC whose vertices are (i) A(1,1,2),B(2,3,5) and C(1,5,5) (ii) A(1,2,3),B(2,-1,4) and C(4,5,-1) (iii) A(3,-1,2),B(1,-1,-3) and C(4,-3,1) (iv) A ( 1,-1,2),B(2,1,-1) and C(3,-1,2).

Prove that the following points are collinear : {:((i)(2","1)","(4","3)and(3","2),(ii)(9","6)","(-1","4)and(2","5)),((iii)(b+c","a)","(c+a","b)and(a+b","c),(iv)(5","6)","(-1","4)and (2","5)):}

Which of the following statements are correct: (i) {phi}={0} (ii) {a,b,c}={b,a,c} (iii) {1,2,{3}}={{1},2.3}

Expand (i) (2a-5b-7c)^2 (ii) ( -3a+4b-5c)^2 (iii) ((1)/(2)a-(1)/(4)b+2)^2

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Match the following: (a) {:(A,B,C,D),(2,3,4,1):} (b) {:(A,B,C,D),(4,1,3,2):} (c) {:(A,B,C,D),(4,3,2,1):} (d) {:(A,B,C,D),(1,4,2,3):}